On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes

نویسندگان

  • S. Pandey
  • S. Houweling
  • M. Krol
  • I. Aben
  • T. Röckmann
چکیده

We present a method for assimilating total column CH4 : CO2 ratio measurements from satellites for inverse modeling of CH4 and CO2 fluxes using the variational approach. Unlike conventional approaches, in which retrieved CH4 : CO2 are multiplied by model-derived total column CO2 and only the resulting CH4 is assimilated, our method assimilates the ratio of CH4 and CO2 directly and is therefore called the ratio method. It is a dual tracer inversion, in which surface fluxes of CH4 and CO2 are optimized simultaneously. The optimization of CO2 fluxes turns the hard constraint of prescribing model-derived CO2 fields into a weak constraint on CO2, which allows us to account for uncertainties in CO2. The method has been successfully tested in a synthetic inversion setup. We show that the ratio method is able to reproduce assumed true CH4 and CO2 fluxes starting from a prior, which is derived by perturbing the true fluxes randomly. We compare the performance of the ratio method with that of the traditional proxy approach and the use of only surface measurements for estimating CH4 fluxes. Our results confirm that the optimized CH4 fluxes are sensitive to the treatment of CO2, and that hard constraints on CO2 may significantly compromise results that are obtained for CH4. We find that the relative performance of ratio and proxy methods have a regional dependence. The ratio method performs better than the proxy method in regions where the CO2 fluxes are most uncertain. However, both ratio and proxy methods perform better than the surface-measurement-only inversion, confirming the potential of spaceborne measurements for accurately determining fluxes of CH4 and other greenhouse gases (GHGs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Modeling of Adsorption and Selectivity of the Binary Gases of CO2 /CH4 , CH4 /H2 and CO2 /H2 on MWCNT-OH

Equilibrium adsorption property of multi-walled carbon nanotubes with OH group was studied using experimental design for the adsorption of CO2 , CH4 and H2 . The effect of temperature, pressure, their binary interactions and quadratic terms were studied for adsorption capacity of nanotubes and the results were analyzed by the face centered central composite design method and analysis of varianc...

متن کامل

Dynamics and Separation-based Adsorption of Binary Mixtures of CH4, CO2 and H2S on MIL-47: GCMC and MD Studies

This study aimed to investigate the adsorption of CH4, CO2, H2S at a temperature of 298.15 K and pressurerange of 0.1 to 30 atm, and compare the results with experimental data for MIL-47 using GCMC. Themaximum CH4, CO2 and H2S adsorptions were 3.6, 10.45, and 12.57 mol.kg-1, respectively. In addition, theselectivity for binary mixtures of CH4/CO2 and CH4/H2S was calculated. Th...

متن کامل

Enhancement of CO2/CH4 Adsorptive Selectivity by Functionalized Nano Zeolite

In this work, we have modified a synthesized Y-type zeolite (Si/Al = 2.5), with three different amines to investigate of the influence of adsorbent’s surface modification on CO2 selectivity over CH4. The pristine and amine-functionalized NaY zeolites were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), and N2 adsorption. The resu...

متن کامل

Emission evaluation of CO2 and CH4 gases in the selected gas pressure booster station in the Bangestan field of the National Iranian Oil Company

Background: Iran is located in the seventh rank in terms of CO2 emissions resulting from the fuel combustion in the world. Gas compressor booster stations, due to the several sources of contaminants, are causing the release of large amounts of CO2 and CH4, which will cause climate change therefore, estimating the emissions of the gases from oil and gas, different processing units are necessary....

متن کامل

Error correlation between CO2 and CO as constraint for CO2 flux inversions using satellite data

Inverse modeling of CO2 satellite observations to better quantify carbon surface fluxes requires a chemical transport model (CTM) to relate the fluxes to the observed column concentrations. CTM transport error is a major source of uncertainty. We show that its effect can be reduced by using CO satellite observations as additional constraint in a joint CO2-CO inversion. CO is measured from space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015